Data Recovery for Web Applications

Istemi Ekin Akkus, Ashvin Goel, *University of Toronto* 2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Sistemas Distribuídos e Tolerância a Falhas

João Pereira m3873 | Tiago Simões m3965

Contexto

- Actualmente, as aplicações Web guardam a informação no lado do servidor.
- Os backups podem resolver perdas de dados, mas não diagnostificam o evento causador.
- O objectivo é propor um sistema de recuperação que ajude os administradores na recuperação de dados e identificação dos eventos responsáveis.
- "Our results show that our system enables recovery from data corruption without loss of critical data and incurs small runtime overhead."

Introdução

- A construção de aplicações Web é cada vez mais aberta, possibilitando integrações de plugins de terceiros.
- Consequentemente, a preocupação com o controlo de tais extensões é cada vez maior.
- A perda de dados pode ser revertida com os backups, mas as informações posteriores aos mesmos têm de ser introduzidas manualmente.

Introdução

- O sistema de recuperação proposto não depende da aplicação web.
- Assim é independente e imune às falhas ocorridas na mesma.
- Os principais objectivos do sistema são:
 - Permitir que os administradores diagnostiquem as falhas que corromperam os dados;
 - 2. Permitir a recuperação selectiva dos dados sem comprometer o resto da aplicação.

Introdução

 A principal contribuição deste trabalho é a análise de dependências na recuperação de sistemas par aplicações web.

 Foi implementado um protótipo em PHP e MySQL, testado em sistemas como o Wordpress e Drupal.

Modelo da Aplicação

Uma aplicação web normalmente consiste em três camadas:

- 1. Apresentação;
- Aplicação Lógica;
- 3. Base de Dados.

O sistema proposto tira partido das seguintes capacidades das aplicações web:

- Informação persistente armazenada na BD para permitir acesso concorrente, produzindo logs de acesso aos mesmos;
- As linguagens de programação têm mecanismos próprios de controlo de excepções, etc;
- Os web servers tratam cada pedido de forma independente, criando um processo independente, criando assim isolamento.

Considerações Prévias

O sistema proposto assume que:

- O SGBD e a linguagem de programação usada não contém bugs;
- A corrupção dos dados está na camada da BD, resultando de bugs nas restantes camadas;
- Se a aplicação não usa transacções, cada query é processada separadamente;
- As transações da BD podem ser replicadas correctamente, através de um nível de isolamento.

Visão Geral do Sistema

O sistema consiste em:

- Componente de monitorização on-line;
- Dois componentes de análise e recuperação de dados após a corrupção ser identificada.
- Os componentes de análise e recuperação são usados após identificada uma corrupção.
- Os mesmos usam dados recolhidos na fase de monitorização.

Componente de Monitorização

 Responsável por correlacionar requests ao longo das camadas da aplicação;

 De forma resumida, uma request é transformada numa transação durante a recuperação;

 Esta transformação é baseada na análise do log permitindo o mapeamento entre requests e transacções da BD.

Componente de Análise

- Antes da análise, o estado actual dos dados é guardado;
- Usa dados recolhidos durante a monitorização, derivando três tipos de dependência de dados nas diversas camadas:
 - Dependências da BD;
 - 2. Dependências da Aplicação;
 - 3. Dependências do Cliente.

Componente de Análise Dependências da BD

 Ajudam na correlação das requests quanto às operações baseadas na BD;

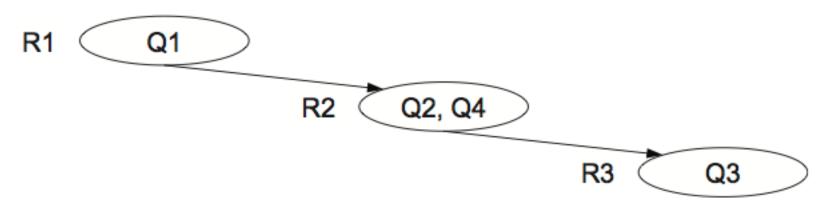


Figure 2. A request dependency graph.

Componente de Análise Dependências da Aplicação

- Existe a possibilidade de serem geradas falsas dependências, sendo que uma request pode envolver múltiplas queries que podem não ter nenhuma dependência;
- É usada uma técnica chamada dynamic tainting para determinar dependências da camada lógica de aplicação relacionadas com uma determinada request, eliminando assim falsas dependências.

Componente de Análise Dependências do Cliente

- Por fim, o componente de análise usa dependências do lado do cliente através das requests
 - Por exemplo, os cookies de sessão identificam todas as requests associadas com uma sessão de login.
- Providencia por exemplo, a possibilidade de um administrador reverter todas as acções tomadas numa dada sessão.

Componente de Recuperação

- Objectivo é disponibilizar ferramentas que facilitem a recuperação.
- Providenciam informação que permitem a identificação das requests responsáveis pelas falhas.
- Depois da acção de análise, este componente usa a informação do log da BD e da request para gerar transacções compensatórias.

Implementação

- Foi implementado um protótipo com PHP e MySQL.
- A maioria do código diz respeito ao componente de recuperação.
- As alterações efectuadas à estrutura do PHP e MySQL são residuais, facilitando o port para outras tecnologias também.
- A principal alteração ao MySQL foi a modificação do JSQLParser.

Avaliação dos Resultados Políticas de Dependência

- A avaliação de resultados tem por base a comparação da eficácia de recuperação segundo as seguintes políticas:
 - Request-Row: Assume que uma request é tainted se lê uma linha tainted da BD.
 - **2. Program-Row:** Durante uma *request* todas as variáveis que usam linhas *tainted* são marcadas como *tainted*.
 - 3. Database-Row: Propaga *taints* quando uma *query* lê uma linha *tainted* e actualiza outras linhas.
 - 4. Program-Field: Similar a 2. mas taints são armazenadas na BD numa granularidade do campo.
 - **5. Database-Field:** Similar a 3. mas *taints* são armazenadas na BD numa granularidade do campo.

- A exactidão da recuperação, com base nas politicas definidas, é medida através da activação de 5 bugs reais em aplicações web, como o Wordpress, Drupal e Gallery2.
- A escolha dos bugs foi feita quando no mesmo:
 - Os dados foram corrompidos e só podem ser reparados com restauro do backup;
 - Os bugs estão relacionados com a camada de aplicação.

 Para avaliação, foram definidas acções de recuperação correctas, como sendo as acções que resolverão a corrupção dos dados.

Para tal foram definidas 3 métricas:

- Determinação das inconsistências aplicacionais responsáveis pela falha;
- Medição de falsos positivos (marcados como responsáveis mas sem culpa);
- Medição de falsos negativos (não marcados como responsáveis quando o deveriam ser).

Table 2. Recovery accuracy for request-level and program-level dependency policies. The false positives column shows numbers without and with table whitelisting, respectively.

Case	Total Number of Requests	Requests to Undo	Dep. Policy	False Positives	False Negatives
			none	0	0
Wordpress -	109	1	request-row	60	0
link category rename			program-row	8	0
			program-field	6	0
			none	0	6
Drupal -	118	7	request-row	111/100	0
lost voting information			program-row	95/89	0
			program-field	89/0	0
			none	0	0
Drupal -	117	1	request-row	116/102	0
lost comments			program-row	100/93	0
			program-field	95/0	0
			none	0	0
Gallery2 -	91	1	request-row	90/13	0
removing permissions			program-row	88/11	0
			program-field	82/10	0
			none	0	0
Gallery2 -	151	1	request-row	148/0	0
resizing images			program-row	139/0	0
			program-field	119/0	0

Table 3. Recovery accuracy of database-level dependency policies. All numbers indicate queries.

Case	Queries to Undo	Dep. Policy	False Positives	False Negatives	Inconsistencies after Undo
Wordpress -	23	database-row	0	15	The count value does not match
link category rename		database-field	0	21	the actual number of links.
Drupal - lost vo-	38	database-row	86	16	The poll_votes table
ting information		database-field	0	18	has duplicate entries.
Drupal -	24	database-row	116	0	none
lost comments		database-field	0	0	
Gallery2 -	9	database-row	97	0	The global sequence id has
removing permissions		database-field	9	0	an old value breaking
Gallery2 -	17	database-row	110	0	future inserts
resizing images		database-field	20	0	requiring a new id.

Avaliação dos Resultados Conclusões

- Estes resultados mostram que, as politicas ao nível da BD tendem a ter menos falsos positivos que os outros níveis:
 - Assim um administrador pode comparar os outputs da BD e determinar as melhores acções correctivas a tomar.
- Um dos maiores desafios é determinar correctamente as dependências entre requests;
- O prototipo implementado permite mostrar que a funcionalidade de recuperação de dados pode ser obtida com pouca sobrecarga e pouca modificação das aplicações.